
Package: prioriactions (via r-universe)
September 10, 2024

Type Package

Version 0.5.0

Title Multi-Action Conservation Planning

Description This uses a mixed integer mathematical programming (MIP)
approach for building and solving multi-action planning
problems, where the goal is to find an optimal combination of
management actions that abate threats, in an efficient way
while accounting for spatial aspects. Thus, optimizing the
connectivity and conservation effectiveness of the prioritized
units and of the deployed actions. The package is capable of
handling different commercial (gurobi, CPLEX) and
non-commercial (symphony, CBC) MIP solvers. Gurobi optimization
solver can be installed using comprehensive instructions in the
'gurobi' installation vignette of the prioritizr package
(available in
<https://prioritizr.net/articles/gurobi_installation_guide.html>).
Instead, 'CPLEX' optimization solver can be obtain from IBM
CPLEX web page (available here
<https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio>).
Additionally, the 'rcbc' R package (available at
<https://github.com/dirkschumacher/rcbc>) can be used to obtain
solutions using the CBC optimization software
(<https://github.com/coin-or/Cbc>). Methods used in the package
refers to Salgado-Rojas et al. (2020)
<doi:10.1016/j.ecolmodel.2019.108901>, Beyer et al. (2016)
<doi:10.1016/j.ecolmodel.2016.02.005>, Cattarino et al. (2015)
<doi:10.1371/journal.pone.0128027> and Watts et al. (2009)
<doi:10.1016/j.envsoft.2009.06.005>. See the prioriactions
website for more information, documentations and examples.

Depends R (>= 3.5.0)

Imports assertthat (>= 0.2.0), Matrix, proto, magrittr, tidyr, dplyr,
Rcpp, rlang

Suggests knitr, gurobi (>= 9.0), Rcplex, roxygen2, rcbc, Rsymphony (>=
0.1-31), rmarkdown, testthat (>= 3.0.0), raster, tmap, sp,

1

https://prioritizr.net/articles/gurobi_installation_guide.html
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://github.com/dirkschumacher/rcbc
https://github.com/coin-or/Cbc
https://doi.org/10.1016/j.ecolmodel.2019.108901
https://doi.org/10.1016/j.ecolmodel.2016.02.005
https://doi.org/10.1371/journal.pone.0128027
https://doi.org/10.1016/j.envsoft.2009.06.005

2 Contents

viridis, markdown, data.table, purrr, readr, slam, tibble,
methods, reshape2

LinkingTo Rcpp, RcppArmadillo (>= 0.10.1.0.0), BH

Encoding UTF-8

LazyData true

License GPL (>= 2)

Language en-US

RoxygenNote 7.2.3

URL https://prioriactions.github.io/prioriactions/,

https://github.com/prioriactions/prioriactions

BugReports https://github.com/prioriactions/prioriactions/issues

VignetteBuilder knitr

Collate 'RcppExports.R' 'internal.R' 'data-class.R' 'writeOutputs.R'
'optimizationProblem-class.R' 'presolve.R' 'evalBlm.R'
'problem_modifier.R' 'evalBudget.R' 'evalTarget.R'
'getActions.R' 'getConnectivityPenalty.R' 'getCost.R'
'getModelInfo.R' 'getPerformance.R' 'getPotentialBenefit.R'
'getSolutionBenefit.R' 'inputData.R' 'package.R'
'portfolio-class.R' 'print.R' 'problem.R' 'show.R' 'simData.R'
'solution-class.R' 'solve.R' 'utils-pipe.R' 'zzz.R'

Roxygen list(markdown = TRUE)

Config/testthat/edition 3

Repository https://prioriactions.r-universe.dev

RemoteUrl https://github.com/prioriactions/prioriactions

RemoteRef HEAD

RemoteSha 16bc97420a2ef8a2f026e7f450f06d2ac0d75f31

Contents
data-class . 3
evalBlm . 5
evalBudget . 6
evalTarget . 7
getActions . 8
getConnectivityPenalty . 10
getCost . 11
getModelInfo . 12
getPerformance . 13
getPotentialBenefit . 15
getSolutionBenefit . 16
inputData . 18
optimizationProblem-class . 22

https://prioriactions.github.io/prioriactions/
https://github.com/prioriactions/prioriactions
https://github.com/prioriactions/prioriactions/issues

data-class 3

portfolio-class . 23
print . 24
prioriactions . 25
problem . 26
show . 28
simData . 29
solution-class . 30
solve . 31

Index 35

data-class Data class

Description

This class is used to represent data of the instances of the corresponding multi-action planning
problem. It includes several methods for retrieving the information of the instance (such as the
spatial allocation of threats and species, the cost of management actions or the structure of the
spatial connectivity across the area where the planning is carried out. This class is created using the
inputData() function.

Value

No return value.

Fields

data list object containing data.

Methods

getActionsAmount(): integer. Number of possible actions.

getData(character name): data.frame(). Object stored in the data field with the correspond-
ing name. The argument name indicates the name of arguments of the problem function ("pu",
"features", "dist_features", "threats", "dist_threats", "sensitivity" or "boundary").

getFeatureAmount(): integer. Number of features.

getFeatureNames(): character. Names of features.

getMonitoringCosts(): numeric vector(). Cost of monitoring each planning unit.

getPlanningUnitsAmount(): integer. Number of planning units.

getActionCosts(): numeric vector(). Cost of actions each planning unit and threat.

getThreatNames(): character. Names of threats.

getThreatsAmount(): integer. Number of threats.

print(): Print basic information of the data instance.

show(): Call print method.

4 data-class

Examples

set seed for reproducibility
set.seed(14)

Set prioriactions path
prioriactions_path <- system.file("extdata/example_input/", package = "prioriactions")

Load in planning unit data
pu_data <- data.table::fread(paste0(prioriactions_path,"/pu.dat"),

data.table = FALSE)
head(pu_data)

Load in feature data
features_data <- data.table::fread(paste0(prioriactions_path,"/features.dat"),

data.table = FALSE)
head(features_data)

Load in planning unit vs feature data
dist_features_data <- data.table::fread(paste0(prioriactions_path,"/dist_features.dat"),

data.table = FALSE)
head(dist_features_data)

Load in the threats data
threats_data <- data.table::fread(paste0(prioriactions_path,"/threats.dat"),

data.table = FALSE)
head(threats_data)

Load in the threats distribution data
dist_threats_data <- data.table::fread(paste0(prioriactions_path,"/dist_threats.dat"),

data.table = FALSE)
head(dist_threats_data)

Load in the sensitivity data
sensitivity_data <- data.table::fread(paste0(prioriactions_path,"/sensitivity.dat"),

data.table = FALSE)
head(sensitivity_data)

Load in the boundary data
boundary_data <- data.table::fread(paste0(prioriactions_path,"/boundary.dat"),

data.table = FALSE)
head(boundary_data)

Create instance
problem_data <- inputData(

pu = pu_data, features = features_data, dist_features = dist_features_data,
dist_threats = dist_threats_data, threats = threats_data, sensitivity = sensitivity_data,
boundary = boundary_data

)

Summary
print(problem_data)

evalBlm 5

Use class methods
problem_data$getData("features")

problem_data$getFeatureAmount()

problem_data$getFeatureNames()

problem_data$getMonitoringCosts()

problem_data$getPlanningUnitsAmount()

problem_data$getActionCosts()

problem_data$getThreatNames()

problem_data$getThreatsAmount()

problem_data$print()

evalBlm Evaluate multiple blm values

Description

Return one solution per instance for different values of blm. Like prioriactions() function, it
inherits all arguments from inputData(), problem() and solve().

Usage

evalBlm(values = c(), ...)

Arguments

values numeric. Values of blm to verify. More than one value is needed.

... arguments inherited from inputData(), problem() and solve() functions.

Details

evalblm() creates and solves multiple instances, of the corresponding multi-actions planning prob-
lem, for different values of blm. Alternatively, this could be obtained by executing function prioriactions()
or by steps the inputData(), problem() and solve() functions; using, in each run, different blm
values. However, the evalblm() function has two advantages with respect to this manual approach:
: 1) it is more efficient to create the models (this is because the model is created just once and, at
each iteration, only the blm values are updated); and 2) the output is a portfolio object, which allows
obtaining information about the group of solutions (including all get functions).

Value

An object of class portfolio.

6 evalBudget

Examples

set seed for reproducibility
set.seed(14)

Create model and solve
port <- evalBlm(pu = sim_pu_data, features = sim_features_data,

dist_features = sim_dist_features_data,
threats = sim_threats_data,
dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data,
boundary = sim_boundary_data,
values = c(0.0, 0.01, 0.02, 0.03),
model_type = "minimizeCosts",
time_limit = 50,
output_file = FALSE,
cores = 2)

getConnectivityPenalty(port)

evalBudget Evaluate multiple budget values

Description

Return one solution per instance for different values of budgets. This function assumes that the
maximizeBenefits option is being used (note that the minimizeCosts option does not require setting a
maximum budget). Like prioriactions() function, it inherits all arguments from inputData(),
problem() and solve().

Usage

evalBudget(values = c(), ...)

Arguments

values numeric. Values of budget to verify. More than one value is needed.
... arguments inherited from inputData(), problem(), and solve() functions.

Details

evalBudget() creates and solves multiple instances, of the corresponding multi-actions planning
problem, for different values of maximum budgets. Alternatively, this could be obtained by execut-
ing function prioriactions() or by steps the inputData(), problem() and solve() functions;
using, in each run, different budgets values. However, the evalBudget() function has two advan-
tages with respect to this manual approach: : 1) it is more efficient to create the models (this is
because the model is created just once and, at each iteration, only the budget values are updated);
and 2) the output is a portfolio object, which allows obtaining information about the group of solu-
tions (including all get functions).

evalTarget 7

Value

An object of class portfolio.

Examples

set seed for reproducibility
set.seed(14)

Create model and solve
port <- evalBudget(pu = sim_pu_data, features = sim_features_data,

dist_features = sim_dist_features_data,
threats = sim_threats_data,
dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data,
boundary = sim_boundary_data,
values = c(1, 10, 50, 100),
time_limit = 50,
output_file = FALSE,
cores = 2)

getSolutionBenefit(port)

evalTarget Evaluate multiple target values

Description

Return one solution per instance for different targets values. This function assumes that the mini-
mizeCosts model is being used. As well as the prioriactions() function, it inherits all arguments
from inputData(), problem() and solve().

Usage

evalTarget(values = c(), ...)

Arguments

values numeric. Proportion of maximum value of benefits to verify (both recovery and
conservation benefits). This information can be obtained with getPotentialBenefit()
function. More than one value is needed.

... arguments inherited from inputData(), problem(), and solve() functions.

8 getActions

Details

evalTarget() creates and solves multiple instances, of the corresponding multi-actions planning
problem, for different proportions of maximum benefit values as target values. It is assumed that the
same proportion is applied for the maximum benefit in recovery and conservation. Alternatively,
this could be obtained by executing function prioriactions() or by steps the inputData(),
problem() and solve() functions; using, in each run, different targets values. However, the
evalTarget() function has two advantages with respect to this manual approach: : 1) it is more
efficient to create the models (this is because the model is created just once and, at each iteration,
only the target values are updated); and 2) the output is a portfolio object, which allows obtaining
information about the group of solutions (including all get functions).

Value

An object of class portfolio.

Examples

set seed for reproducibility
set.seed(14)

Create model and solve
port <- evalTarget(pu = sim_pu_data, features = sim_features_data,

dist_features = sim_dist_features_data,
threats = sim_threats_data,
dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data,
boundary = sim_boundary_data,
values = c(0.1, 0.3, 0.5),
time_limit = 50,
output_file = FALSE,
cores = 2)

getCost(port)

getActions Extract action information

Description

Returns the spatial deployment of the actions for each planning unit of the corresponding solution.

Usage

getActions(x, format = "wide")

getActions 9

Arguments

x solution or portfolio object.

format character. Output format of the action matrix; wide format shows one column
per action, while large format shows four columns: solution_name, pu, action
and solution.

Details

getActions() function assumes that actions can be of three types:

1. to abate specific threats: these actions have the id corresponding to the threat to be abate.

2. to conservation: that indicates if the planning unit is selected to conservative any feature that
is not threatened.

3. to connectivity: that indicates if the planning unit is selected only by connectivity (i.e. without
performing conservation actions or actions against a threat in said unit).

Value

data.frame.

Examples

set seed for reproducibility
set.seed(14)

Load data
data(sim_pu_data, sim_features_data, sim_dist_features_data,
sim_threats_data, sim_dist_threats_data, sim_sensitivity_data,
sim_boundary_data)

Create instance
problem_data <- inputData(
pu = sim_pu_data, features = sim_features_data, dist_features = sim_dist_features_data,
threats = sim_threats_data, dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data, boundary = sim_boundary_data

)

Create optimization model
problem_model <- problem(x = problem_data)

Solve the optimization model
s <- solve(a = problem_model, time_limit = 2, output_file = FALSE, cores = 2)

get actions information in large format
actions <- getActions(s, format = "large")
head(actions)

get actions information in wide format
actions <- getActions(s, format = "wide")
head(actions)

10 getConnectivityPenalty

getConnectivityPenalty

Extract connectivity penalty values

Description

Provides the connectivity penalty value for all actions and planning units in a solution.

Usage

getConnectivityPenalty(x)

Arguments

x solution or portfolio object.

Details

The connectivity penalty among is calculated as the sum of all connectivity penalties by each action
and planning unit in the solution. This can be expressed mathematically for a set of planning units
I indexed by i and j, and a set of threats K indexed by k as:

∑
k∈K

∑
i∈Ik

∑
j∈Ik

xik(1− xjk)cvij

Where, xik is the decisions variable that specify whether an action has been selected to abate threat
k in planning unit i (1) or not (0), cvij is the connectivity penalty that applies when a solution
contains planning unit i but not j o viceversa.

Note that there is an action per threat, so it is assumed that the index of the threat coincides with the
index of the action used to abate it.

Value

data.frame.

Examples

set seed for reproducibility
set.seed(14)

Load data
data(sim_pu_data, sim_features_data, sim_dist_features_data,
sim_threats_data, sim_dist_threats_data, sim_sensitivity_data,
sim_boundary_data)

getCost 11

Create data instance
problem_data <- inputData(
pu = sim_pu_data, features = sim_features_data, dist_features = sim_dist_features_data,
threats = sim_threats_data, dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data, boundary = sim_boundary_data

)

Create optimization model
problem_model <- problem(x = problem_data, blm = 0.03)

Solve the optimization model
s <- solve(a = problem_model, time_limit = 2, output_file = FALSE, cores = 2)

get connectivity penalty values
getConnectivityPenalty(s)

getCost Extract cost values

Description

Provides the sum of costs to actions and monitoring applied in a solution.

Usage

getCost(x)

Arguments

x solution or portfolio object.

Details

The cost value is calculated as the sum of all the individual costs of actions and monitoring carried
out in each of the planning units. This can be expressed mathematically for a set of planning units
I indexed by i, and a set of threats K indexed by k as:

actions =
∑
i∈I

∑
k∈Ki

xikcik

monitoring =
∑
i∈I

xi·c
′

i

Where, xik is the decisions variable that specify whether an action has been selected to abate threat
k in planning unit i (1) or not (0), cik is the action cost to abate threat k in planning unit i and c

′

i is
the monitoring cost of planning unit i. The cost of monitoring is applied to all planning units where
some type of action has been selected (conservation action, to abate threats or connectivity).

Note that there is an action per threat, so it is assumed that the index of the threat coincides with the
index of the action used to abate it.

12 getModelInfo

Value

data.frame.

Examples

set seed for reproducibility
set.seed(14)

Load data
data(sim_pu_data, sim_features_data, sim_dist_features_data,
sim_threats_data, sim_dist_threats_data, sim_sensitivity_data,
sim_boundary_data)

Create data instance
problem_data <- inputData(
pu = sim_pu_data, features = sim_features_data, dist_features = sim_dist_features_data,
threats = sim_threats_data, dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data, boundary = sim_boundary_data

)

Create optimization model
problem_model <- problem(x = problem_data)

Solve the optimization model
s <- solve(a = problem_model, time_limit = 2, output_file = FALSE, cores = 2)

Get costs
getCost(s)

getModelInfo Extract general information about mathematical model

Description

Provides general information about the mathematical model.

Usage

getModelInfo(x)

Arguments

x optimizationProblem, solution or portfolio object.

getPerformance 13

Details

getModelInfo() function returns five specific fields:

1. solution_name: indicates the name of the solution, by default is sol.

2. model_sense: returns the optimization sense (i.e., it indicates whether the objective function
is minimized or maximize).

3. n_constraints: returns the number of constraints in the corresponding mathematical optimiza-
tion model.

4. n_variables: returns the number of variables in the corresponding mathematical optimization
model.

5. size: returns the size of the constraints’ coefficients matrix A number of constraints and num-
ber of variables).

Value

data.frame.

Examples

set seed for reproducibility
set.seed(14)

Load data
data(sim_pu_data, sim_features_data, sim_dist_features_data,
sim_threats_data, sim_dist_threats_data, sim_sensitivity_data,
sim_boundary_data)

Create data instance
problem_data <- inputData(
pu = sim_pu_data, features = sim_features_data, dist_features = sim_dist_features_data,
threats = sim_threats_data, dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data, boundary = sim_boundary_data

)

Create optimization model
problem_model <- problem(x = problem_data, blm = 1)

get model information
getModelInfo(problem_model)

getPerformance Extract general information about solution

Description

Provides general information about the process of solving.

14 getPerformance

Usage

getPerformance(x)

Arguments

x solution or portfolio object.

Details

getPerformance() function returns five specific fields:

1. solution_name: indicates the name of the solution, by default is sol.

2. objective_value: indicates the value of the objective function of a given solution. This value
depends on the type of model solved (more information in the problem() function).

3. gap: returns the relative MIP optimality gap of a solution. It is measured as the ratio between
the objective function induced by the best known (primal solution) integer solution and the
objective function induced by the best node in the search tree (dual solution).

4. solving_time: indicates the solving time of mathematical model.

5. status: provides the status of solver at the end of the optimization period. This can have six
states:

• Optimal solution (according to gap tolerance) : When the resolution of the model stop when
the quality of the solution (gap) is less than or equal to gap_limit (parameter of the solve()
function).

• No solution (model was proven to be infeasible or unbounded): When the model is infeasible.

• Feasible solution (according to time limit): When the resolution of the model stops when a
time_limit has been reached finding a feasible solution (parameter of the solve() function).

• No solution (according to time limit): When the resolution of the model stops when a time_limit
has been reached without finding a feasible solution (parameter of the solve() function).

• First feasible solution: When the resolution of the model stops when it has found the first
feasible solution (solution_limit = TRUE parameter in solve() function).

• No solution information is available: For any other case.

Value

data.frame.

Examples

set seed for reproducibility
set.seed(14)

Load data
data(sim_pu_data, sim_features_data, sim_dist_features_data,
sim_threats_data, sim_dist_threats_data, sim_sensitivity_data,
sim_boundary_data)

getPotentialBenefit 15

Create data instance
problem_data <- inputData(
pu = sim_pu_data, features = sim_features_data, dist_features = sim_dist_features_data,
threats = sim_threats_data, dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data, boundary = sim_boundary_data

)

Create optimization model
problem_model <- problem(x = problem_data, blm = 1)

Solve the optimization model
s <- solve(a = problem_model, time_limit = 2, output_file = FALSE, cores = 2)

get solution gap
getPerformance(s)

getPotentialBenefit Extract potential benefit of features

Description

Provides the maximum values of benefits to achieve for each feature given a set of data inputs.

Usage

getPotentialBenefit(x)

Arguments

x data-class object.

Details

For a given feature s, let Is be the set of planning units associated with s, let ris is the amount of
feature s in planning unit i, let Ks be the set of threats associated with s, and let Ki be the set of
threats associated with i. The local benefit associated with s in a unit i is given by:

bis = pisrisbis =

∑
k∈Ki∩Ks

xik

|Ki ∩Ks|
ris

Where xik is a decision variable such that xik = 1 if an action againts threat k is applied in unit
i, and xik = 0, otherwise. This expression for the probability of persistence of the feature (pis) is
defined only for the cases where we work with values of binary intensities (presence or absence of
threats). See the sensitivities vignette to know the work with continuous intensities.

While the total benefit is calculated as the sum of the local benefits per feature:

https://prioriactions.github.io/prioriactions/articles/sensitivities.html

16 getSolutionBenefit

bs =
∑
i∈Is

∑
k∈Ki∩Ks

xik

|Ki ∩Ks|
ris

Since the potential benefit is being calculated, all variables xik are assumed to be equal to 1; that
is, all possible actions are carried out, and only those that have a lock-out status are kept out of the
planning (see inputData() function for more information).

Value

data.frame.

Examples

set seed for reproducibility
set.seed(14)

Load data
data(sim_pu_data, sim_features_data, sim_dist_features_data,
sim_threats_data, sim_dist_threats_data, sim_sensitivity_data,
sim_boundary_data)

Create data instance
problem_data <- inputData(
pu = sim_pu_data, features = sim_features_data, dist_features = sim_dist_features_data,
threats = sim_threats_data, dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data, boundary = sim_boundary_data

)

Get maximum benefits to obtain
getPotentialBenefit(problem_data)

getSolutionBenefit Extract benefit values

Description

Returns the total benefit induced by the corresponding solution. The total benefit is computed as
the sum of the benefits obtained, for all features, across all the units in the planning area.

Usage

getSolutionBenefit(x, type = "total")

Arguments

x Solution-class or Portfolio-class.
type character. Output format of the benefits matrix; total shows the total ben-

efit by feature, while local format shows the benefit achieved per feature and
planning unit.

getSolutionBenefit 17

Details

For a given feature s, let Is be the set of planning units associated with s, let ris is the amount of
feature s in planning unit i, let Ks be the set of threats associated with s, and let Ki be the set of
threats associated with i. The local benefit associated with s in a unit i is given by:

bis = pisrisbis =

∑
k∈Ki∩Ks

xik

|Ki ∩Ks|
ris

Where xik is a decision variable such that xik = 1 if an action againts threat k is applied in unit
i, and xik = 0, otherwise. This expression for the probability of persistence of the feature (pis) is
defined only for the cases where we work with values of binary intensities (presence or absence of
threats). See the sensitivities vignette to know the work with continuous intensities.

While the total benefit is calculated as the sum of the local benefits per feature:

bs =
∑
i∈Is

∑
k∈Ki∩Ks

xik

|Ki ∩Ks|
ris

Value

data.frame.

Examples

set seed for reproducibility
set.seed(14)

Load data
data(sim_pu_data, sim_features_data, sim_dist_features_data,
sim_threats_data, sim_dist_threats_data, sim_sensitivity_data,
sim_boundary_data)

Create data instance
problem_data <- inputData(
pu = sim_pu_data, features = sim_features_data, dist_features = sim_dist_features_data,
threats = sim_threats_data, dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data, boundary = sim_boundary_data

)

Get maximum benefits to obtain
getPotentialBenefit(problem_data)

Create optimization model
problem_model <- problem(x = problem_data)

Solve the optimization model
s <- solve(a = problem_model, time_limit = 2, output_file = FALSE, cores = 2)

get local benefits of solution
local_benefit <- getSolutionBenefit(s, type = "local")
head(local_benefit)

https://prioriactions.github.io/prioriactions/articles/sensitivities.html

18 inputData

get total benefits of solution
total_benefit <- getSolutionBenefit(s, type = "total")
head(total_benefit)

inputData Creates the multi-action planning problem

Description

Create the data object with information about the multi-action conservation planning problem. This
function is used to specify all the data that defines the spatial prioritization problem (planning units
data, feature data, threats data, and their spatial distributions.)

Usage

inputData(pu, features, dist_features, threats, dist_threats, ...)

S4 method for signature
'data.frame,data.frame,data.frame,data.frame,data.frame'
inputData(
pu,
features,
dist_features,
threats,
dist_threats,
sensitivity = NULL,
boundary = NULL

)

Arguments

pu Object of class data.frame() that specifies the planning units (PU) of the corre-
sponding instance and their corresponding monitoring cost and status. Each row
corresponds to a different planning unit. This file is inherited from the pu.dat in
Marxan. It must contain the following columns:

id integer unique identifier for each planning unit.
monitoring_cost numeric cost of including each planning unit in the reserve

system.
status integer (optional) value that indicate if each planning unit should be

available to be selected (0), locked-in (2) as part of the solution, or locked-
out (3) and excluded from the solution.

inputData 19

features Object of class data.frame() that specifies the conservation features to con-
sider in the optimization problem. Each row corresponds to a different feature.
This file is inherited from marxan’s spec.dat.
The prioriactions package supports two types of purposes when optimizing:
focus on recovery of features threatened (through the recovery target), where
only take into account benefits when taking action against threats and there is no
benefit when selecting planning units where the features are not threatened; or
include the benefits of the features sites where they are not threatened (through
the conservation target).
Note that by default only information on recovery targets is necessary, while
conservation targets equal to zero are assumed. The maximum values of benefits
to achieve both recovery and conservation per feature can be verified with the
getPotentialBenefit() function. For more information on the implications
of these targets in the solutions see the recovery vignette.
This file must contain the following columns:
id integer unique identifier for each conservation feature.
target_recovery numeric amount of recovery target to achieve for each con-

servation feature. This field is required if a minimizeCosts model is used.
target_conservation numeric (optional) amount of conservation target to

achieve for each conservation feature. This field is used only if a model of
the type minimizeCosts is applied.

name character (optional) name for each conservation feature.
dist_features Object of class data.frame() that specifies the spatial distribution of conser-

vation features across planning units. Each row corresponds to a combination
of planning unit and feature. This file is inherited from marxan’s puvspr.dat. It
must contain the following columns:
pu integer id of a planning unit where the conservation feature listed on the

same row occurs.
feature integer id of each conservation feature.
amount numeric amount of the feature in the planning unit. Set to 1 to work

with presence/absence.
threats Object of class data.frame() that specifies the threats to consider in the opti-

mization exercise. Each row corresponds to a different threats. It must contain
the following columns:
id integer unique identifier for each threat.
blm_actions numeric (optional) penalty of connectivity between threats. De-

fault is 0.
name character (optional) name for each threat.

dist_threats Object of class data.frame() that specifies the spatial distribution of threats
across planning units. Each row corresponds to a combination of planning unit
and threat. It must contain the following columns:
pu integer id of a planning unit where the threat listed on the same row occurs.
threat integer id of each threat.
amount numeric amount of the threat in the planning unit. Set to 1 to work

with presence/absence. Continuous amount values require that feature sen-
sitivities to threats be established (more info in sensitivities vignette).

https://prioriactions.github.io/prioriactions/articles/objectives.html
https://prioriactions.github.io/prioriactions/articles/sensitivities.html

20 inputData

action_cost numeric cost of an action to abate the threat in each planning
unit.

status integer (optional) value that indicates if each action to abate the threat
is available to be selected (0), locked-in (2) as part of the solution, or locked-
out (3) and therefore excluded from the solution.

... Unused arguments, reserved for future expansion.

sensitivity (optional) Object of class data.frame() that specifies the sensitivity of each
feature to each threat. Each row corresponds to a combination of feature and
threat. If not informed, all features are assumed to be sensitive to all threats.
Sensitivity can be parameterized in two ways: binary; the feature is sensitive
or not, or continuous; with response curves of the probability of persistence of
the features to threats. For the first case, it is only necessary to indicate the ids
of the threats and the respective features sensitive to them. In the second case,
the response can be parameterized through four values: δ1, δ2, δ3 and δ4. See
sensitivities vignette for more information on continuous sensitivities. Then, the
sensitivity input must contain the following columns:

feature integer id of each conservation feature.
threat integer id of each threat.
delta1 numeric (optional) the minimum intensity of the threat at which the

features probability of persistence starts to decline. The more sensitive the
feature is to the threat, the lowest this value will be. Default is 0.

delta2 numeric (optional) the value of intensity of the threat over which the
feature has a probability of persistence of 0. If it is not established,it is
assumed as the maximum value of the threat across all planning units in
the study area. Note that this might overestimate the sensitivity of features
to threats, as they will only be assumed to disappear from planning units if
the threats reach the maximum intensity value in the study area.

delta3 numeric (optional) minimum probability of persistence of a features
when a threat reaches its maximum intensity value. Default is 0.

delta4 numeric (optional) maximum probability of persistence of a features
in absence threats. Default is 1.

Note that optional parameters delta1, delta2, delta3 and delta4 can be provided
independently.

boundary (optional) Object of class data.frame() that specifies the spatial relationship
between pair of planning units. Each row corresponds to a combination of plan-
ning unit. This file is inherited from marxan’s bound.dat. It must contain the
following columns:

id1 integer id of each planning unit.
id2 integer id of each planning unit.
boundary numeric penalty applied in the objective function when only one of

the planning units is present in the solution.

Value

An object of class data.

https://prioriactions.github.io/prioriactions/articles/sensitivities.html

inputData 21

References

• Ball I, Possingham H, Watts, M. Marxan and relatives: software for spatial conservation
prioritization. Spatial conservation prioritisation: quantitative methods and computational
tools 2009.

See Also

For more information on the correct format for Marxan input data, see the official Marxan website
and Ball et al. (2009).

Examples

set seed for reproducibility
set.seed(14)

Set prioriactions path
prioriactions_path <- system.file("extdata/example_input/", package = "prioriactions")

Load in planning unit data
pu_data <- data.table::fread(paste0(prioriactions_path,"/pu.dat"),

data.table = FALSE)
head(pu_data)

Load in feature data
features_data <- data.table::fread(paste0(prioriactions_path,"/features.dat"),

data.table = FALSE)
head(features_data)

Load in planning unit vs feature data
dist_features_data <- data.table::fread(paste0(prioriactions_path,"/dist_features.dat"),

data.table = FALSE)
head(dist_features_data)

Load in the threats data
threats_data <- data.table::fread(paste0(prioriactions_path,"/threats.dat"),

data.table = FALSE)
head(threats_data)

Load in the threats distribution data
dist_threats_data <- data.table::fread(paste0(prioriactions_path,"/dist_threats.dat"),

data.table = FALSE)
head(dist_threats_data)

Load in the sensitivity data
sensitivity_data <- data.table::fread(paste0(prioriactions_path,"/sensitivity.dat"),

data.table = FALSE)
head(sensitivity_data)

Load in the boundary data
boundary_data <- data.table::fread(paste0(prioriactions_path,"/boundary.dat"),

data.table = FALSE)
head(boundary_data)

https://marxansolutions.org

22 optimizationProblem-class

Create data instance
problem_data <- inputData(
pu = sim_pu_data, features = sim_features_data, dist_features = sim_dist_features_data,
threats = sim_threats_data, dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data, boundary = sim_boundary_data

)

Summary
print(problem_data)

optimizationProblem-class

Optimization problem class

Description

This class encodes the corresponding optimization model. It is created using problem() function.

Value

No return value.

Fields

$data list object containing data of the mathematical model.

$ConservationClass object of class data-class() that contains the data input.

Methods

getData(character name) vector(). Object stored in the data field with the corresponding
name. The data correspond to the different parts of the mathematical model. The argument
name can be made to the following: "obj", "rhs", "sense", "vtype", "A", "bounds" or "mod-
elsense".

getDataList() list() of vector(). Object stored in the data. It contains all information relative
to the mathematical model, such as "obj", "rhs", etc.

print() Print basic information of the optimization model.

show() Call print method.

Examples

set seed for reproducibility
set.seed(14)

Load data
data(sim_pu_data, sim_features_data, sim_dist_features_data,
sim_threats_data, sim_dist_threats_data, sim_sensitivity_data,

portfolio-class 23

sim_boundary_data)

Create data instance
problem_data <- inputData(
pu = sim_pu_data, features = sim_features_data, dist_features = sim_dist_features_data,
threats = sim_threats_data, dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data, boundary = sim_boundary_data

)

Create optimization model
problem_model <- problem(x = problem_data, blm = 1)

Use class methods
head(problem_model$getData("obj"))

problem_model$print()

portfolio-class Portfolio class

Description

This class encodes for the solutions obtained when solving multiple instances. This includes sev-
eral methods to obtain information about both the optimization process and the solution associ-
ated with the planning units and conservation actions. It is created using the eval functions (e.g.
evalTarget() or evalBudget()).

Value

No return value.

Fields

$data list. Object containing data on the results of the optimization process.

Methods

getNames() character. Label indicating the name of solutions.

print() Print basic information of the model solution.

show() Call print method.

Examples

set seed for reproducibility
set.seed(14)

Create model and solve
port <- evalBlm(pu = sim_pu_data, features = sim_features_data,

dist_features = sim_dist_features_data,

24 print

threats = sim_threats_data,
dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data,
boundary = sim_boundary_data,
values = c(0.0, 0.01, 0.02, 0.03),
model_type = "minimizeCosts",
time_limit = 50,
output_file = FALSE, cores = 2)

Use class methods
port$getNames()

port$print()

print Print

Description

Displays information about an object.

Usage

S3 method for class 'Data'
print(x, ...)

S3 method for class 'OptimizationProblem'
print(x, ...)

S3 method for class 'Solution'
print(x, ...)

S3 method for class 'Portfolio'
print(x, ...)

Arguments

x Any object.

... Not used.

Value

None.

See Also

base::print().

prioriactions 25

prioriactions Create and solve multi-actions planning problems

Description

Create and solve a multi-actions planning problem. It can be used instead of following the sequence
of the inputData(), problem() and solve() functions.

Usage

prioriactions(...)

Arguments

... arguments inherited from inputData(), problem() and solve() functions.

Value

An object of class solution.

Examples

This example uses input files included into package.

set seed for reproducibility
set.seed(14)

Load data
data(sim_pu_data, sim_features_data, sim_dist_features_data,
sim_threats_data, sim_dist_threats_data, sim_sensitivity_data,
sim_boundary_data)

Create data instance
s <- prioriactions(pu = sim_pu_data, features = sim_features_data,

dist_features = sim_dist_features_data,
threats = sim_threats_data,
dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data,
boundary = sim_boundary_data,
model_type = "minimizeCosts",
time_limit = 50,
output_file = FALSE,
cores = 2)

print(s)

26 problem

problem Create mathematical model

Description

Create an optimization model for the multi-action conservation planning problem, following the
mathematical formulations used in Salgado-Rojas et al. (2020).

Usage

problem(
x,
model_type = "minimizeCosts",
budget = 0,
blm = 0,
curve = 1,
segments = 3

)

Arguments

x data object. Data used in a problem of prioritization of multiple conservation
actions. This object must be created using the problem() function.

model_type character. Name of the type of model to create. With two possible values:
minimizeCosts and maximizeBenefits.

budget numeric. Maximum budget allowed. This field is used only if a model of the
type maximizeBenefits is applied.

blm numeric. Weight factor applied to the sum of connectivity penalties for missed
connections in a solution, similar to Boundary Length Modifier (BLM) in Marxan.
This argument only has an effect when the boundary is available.

curve integer. Type of continuous curve used to represent benefit expression. It
can be a linear (1), quadratic (2) or cubic (3) function. See Details for more
information.

segments integer. Number of segments (1, 2, 3, 4 or 5) used to approximate the non-
linear expression (curve) in the calculate benefits. See Details for more infor-
mation.

Details

Currently the problem function allows you to create two types of mathematical programming mod-
els:

minimize cost (minimizeCosts): This model seeks to find the set of actions that minimizes the
overall planning costs, while meeting a set of representation targets for the conservation fea-
tures.

problem 27

This model can be expressed mathematically for a set of planning units I indexed by i a set of
features S indexed by s, and a set of threats K indexed by k as:

min
∑
i∈I

∑
k∈Ki

xikcik +
∑
i∈I

xi·c
′
i + blm · connectivitys.t .

∑
i∈Is

pisris ≥ ts∀s ∈ S

Where, xik is a decisions variable that specifies whether an action to abate threat k in planning
unit i has been selected (1) or not (0), cik is the cost of the action to abate the threat k in the
planning unit i, c′i is the monitoring cost of planning unit i, pis is the probability of persistence
of the feature s in the planning unit i (ranging between 0 and 1), ris is the amount of feature
s in planning unit i. ts is the recovery target for feature s. In the case of working with
conservation target, the following constraint is necessary:∑

i∈Is:|Ks∩Ki|≠0

zisris ≥ t′s∀s ∈ S

With, zis as the probability of persistence by conservation of the feature s in the planning unit
i (ranging between 0 and 1). It is only present when there is no spatial co-occurrence between
a feature and its threats (i.e. |Ks ∩ Ki| ̸= 0). In the case of binary threat intensities it is
assumed as 1. t′s is the conservation target for feature s.

maximize benefits (maximizeBenefits): The maximize benefits model seeks to find the set of ac-
tions that maximizes the sum of benefits of all features, while the cost of performing actions
and monitoring does not exceed a certain budget. Using the terminology presented above, this
model can be expressed mathematically as:

max
∑
i∈I

∑
s∈Si

bis − blm · connectivitys.t .
∑
i∈I

∑
k∈Ki

xikcik +
∑
i∈I

xi·c
′
i ≤ budget

Where bis is the benefit of the feature s in a planning unit i and it is calculated by multiplying the
probability of persistence of the feature in the unit by its corresponding amount, i.e., bis = pisris.
When we talk about recovering, the probability of persistence is a measure of the number of actions
taken against the threats that affect said feature. For more information on its calculation, see the
getSolutionBenefit() or getPotentialBenefit() functions references.

As a way of including the risk associated with calculating our probability of persistence of the fea-
tures and in turn, avoiding that many low probabilities of persistence end up reaching the proposed
targets, is that we add the curve parameter. That incorporates an exponent (values of 1: linear, 2:
quadratic or 3: cubic) to the calculation of the probability of persistence. Thus penalizing the low
probabilities in the sum of the benefits achieved. Since prioriactions works with linear models,
we use a piecewise linearization strategy to work with non-linear curves in bis. The segments pa-
rameter indicates how well the expression approximates the curved used in bis. A higher number
implies a better approximation but increases the resolution complexity. Note that for a linear curve
(curve = 1) it is not necessary to set a segment parameter.

Parameters blm and blm_actions allow controlling the spatial connectivity of the selected units
and of the deployed actions, respectively (similar to BLM in Marxan).

Value

An object of class optimizationProblem.

28 show

See Also

For more information regarding the arguments curve and segments, see the supplementary material
of Salgado-Rojas et al. (2020)..

Examples

This example uses input files included into package.

set seed for reproducibility
set.seed(14)

Load data
data(sim_pu_data, sim_features_data, sim_dist_features_data,
sim_threats_data, sim_dist_threats_data, sim_sensitivity_data,
sim_boundary_data)

Create data instance
problem_data <- inputData(
pu = sim_pu_data, features = sim_features_data, dist_features = sim_dist_features_data,
threats = sim_threats_data, dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data, boundary = sim_boundary_data

)

Create minimizeCosts model
model_min <- problem(x = problem_data, blm = 1, model_type = "minimizeCosts")

#' ## Create maximazeBenefits model
model_max <- problem(x = problem_data, model_type = "maximizeBenefits", budget = 100)

show Show

Description

Display information about an object.

Usage

S4 method for signature 'Data'
show(x)

S4 method for signature 'OptimizationProblem'
show(x)

S4 method for signature 'Portfolio'
show(x)

Arguments

x Any object.

simData 29

See Also

methods::show().

simData Simulated multi-action planning data

Description

Simulated data for making prioritizations.

sim_pu_data Planning units are represented as tabular data.

sim_features_data Features are represented as tabular data.

sim_dist_features_data The simulated distribution of four features.

sim_threats_data Threats are represented as tabular data.

sim_dist_threats_data The simulated threats of two threats.

sim_sensitivity_data Sensitivity of features to threats as tabular data.

sim_boundary_data Boundary data between one hundred planning units.

Usage

data(sim_pu_data)

data(sim_features_data)

data(sim_dist_features_data)

data(sim_threats_data)

data(sim_dist_threats_data)

data(sim_sensitivity_data)

data(sim_boundary_data)

Format

sim_pu_data data.frame object.

sim_features_data data.frame object.

sim_dist_features_data data.frame object.

sim_threats_data data.frame object.

sim_dist_threats_data data.frame object.

sim_sensitivity_data data.frame object.

sim_boundary_data data.frame object.

30 solution-class

Examples

Not run:
load data
data(sim_pu_data, sim_features_data, sim_dist_features_data,
sim_threats_data, sim_dist_threats_data, sim_sensitivity_data,
sim_boundary_data)

plot examples
library(raster)
r <- raster::raster(ncol=10, nrow=10, xmn=0, xmx=10, ymn=0, ymx=10)

plot cost of pu's
values(r) <- sim_pu_data$monitoring_cost
plot(r)

plot feature distribution of feature 1
features <- tidyr::spread(data = sim_dist_features_data, key = feature, value = amount, fill = 0)
values(r) <- features$'1'
plot(r)

End(Not run)

solution-class Solution class

Description

This class is used to represent the solution of the MIP (Mixed-Integer Programming) model. This
includes several methods to obtain information about both the optimization process and the solution
associated with the planning units and actions. It is created using the solve() function.

Value

No return value.

Fields

$data list. Object containing data on the results of the optimization process.

Methods

print() Print basic information of the model solution.

show() Call print method.

solve 31

Examples

set seed for reproducibility
set.seed(14)

Load data
data(sim_pu_data, sim_features_data, sim_dist_features_data,
sim_threats_data, sim_dist_threats_data, sim_sensitivity_data,
sim_boundary_data)

Create data instance
problem_data <- inputData(
pu = sim_pu_data, features = sim_features_data, dist_features = sim_dist_features_data,
threats = sim_threats_data, dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data, boundary = sim_boundary_data

)

Create optimization model
problem_model <- problem(x = problem_data, blm = 1)

Solve the optimization model
s <- solve(a = problem_model, time_limit = 5, output_file = FALSE, cores = 2)

Use class methods

s$print()

solve Solve mathematical models

Description

Solves the optimization model associated with the multi-action conservation planning problem.
This function is used to solve the mathematical model created by the problem() function.

Usage

solve(
a,
solver = "",
gap_limit = 0,
time_limit = .Machine$integer.max,
solution_limit = FALSE,
cores = 2,
verbose = TRUE,
name_output_file = "output",
output_file = TRUE

)

32 solve

Arguments

a optimizationProblem object. Optimization model created for the problem of
prioritization of multiple conservation actions. This object must be created using
the problem() function.

solver string. Name of solver to use to solve the model. The following solvers are
supported: "gurobi"(requires the gurobi package), "cplex"(requires the Rc-
plex package), "cbc"(requires the rcbc package) and "symphony"(requires the
Rsymphony package). We recommend using gurobi (for more information on
how to obtain an academic license here).

gap_limit numeric. Value between 0 and 1 that represents the gap to optimality, i.e., a
relative number that cause the optimizer to terminate when the difference be-
tween the upper and lower objective function bounds is less than the gap times
the upper bound. For example, a value of 0.01 will result in the optimizer stop-
ping when the difference between the bounds is 1 percent of the upper bound.
Default is 0.0.

time_limit numeric. Time limit to run the optimizer (in seconds). The solver will return the
current best solution when this time limit is exceeded. Default is the maximum
integer number of your machine.

solution_limit logical. Indicates if the solution process should be stopped after the first fea-
sible solution is found (TRUE), or not (FALSE).

cores integer. Number of parallel cores to use in the machine to solve the problem.

verbose logical. Indicates if the solver information is displayed while solving the opti-
mization model (TRUE), or if it is not displayed (FALSE).

name_output_file

string. Prefix of all output names.

output_file logical. Indicates if the outputs are exported as .csv files (TRUE), or they are not
exported (FALSE). Currently, 5 files are exported. The distribution of actions in
the solution, the distribution of the selected planning units, the benefits achieved
by the features, the parameters used, and the optimization engine log.

Details

The solvers supported by the solve() function are described below.

Gurobi solver Gurobi is a state-of-the-art commercial optimization software with an R package
interface. It is by far the fastest of the solvers available in this package, however, also this
solver is not freely available. That said, licenses are available to academics at no cost. The
gurobi package is distributed with the Gurobi software suite. This solver uses the gurobi
package to solve problems.

CPLEX solver cplex is a state-of-the-art commercial optimization software with an R package
interface. Like Gurobi, it is not freely accessible, but we can obtain academic licenses. We
recommend using this solver if the Gurobi solver is not available. Licenses are available for
the IBM CPLEX software to academics at no cost here. This solver uses the Rcplex package
to solve problems.

https://www.gurobi.com/
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://github.com/coin-or/Cbc
https://github.com/coin-or/SYMPHONY
https://prioritizr.net/articles/gurobi_installation_guide.html
https://www.gurobi.com/
https://www.ibm.com/es-es/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

solve 33

CBC solver CBC is an open-source mixed integer linear programming solver written in C++. It
is part of the Computational Infrastructure for Operations Research (COIN-OR) project inter-
face. rcbc package to solve problems is now available only on Github. Please ensure that you
closely adhere to the detailed installation instructions provided here for proper setup.

Symphony solver SYMPHONY is an open-source integer programming solver that is part of the
Computational Infrastructure for Operations Research (COIN-OR) project, an initiative to
promote development of open-source tools for operations research (a field that includes linear
programming). The Rsymphony package provides an interface to COIN-OR and is available
on CRAN. This solver uses the Rsymphony package to solve problems.

Value

An object of class solution.

See Also

For more information on how to install and obtain an academic license of the Gurobi solver, see the
Gurobi installation guide, which can be found online at prioritizr vignette. Just like Gurobi, cplex
needs an academic licence to work. Details about how to install the cplex solver, see the webpage
IBM CPLEX. Once installed, see the Rcplex installation guide, which can be found online at
Rcplex package.

Examples

Not run:
This example uses input files included into package.

Load data
data(sim_pu_data, sim_features_data, sim_dist_features_data,
sim_threats_data, sim_dist_threats_data, sim_sensitivity_data,
sim_boundary_data)

Create data instance
problem_data <- inputData(
pu = sim_pu_data, features = sim_features_data, dist_features = sim_dist_features_data,
threats = sim_threats_data, dist_threats = sim_dist_threats_data,
sensitivity = sim_sensitivity_data, boundary = sim_boundary_data

)

Create optimization model
problem_model <- problem(x = problem_data, blm = 1)

Solve the optimization model using a gap_limit and gurobi solver
NOTE: The Gurobi solver must be previously installed and must have a valid license!
s1 <- solve(a = problem_model, solver = "gurobi", gap_limit = 0.01, output_file = FALSE, cores = 2)

print(s1)

Solve the optimization model using a gap_limit and symphony solver
s2 <- solve(a = problem_model,

solver = "symphony",

https://github.com/coin-or/Cbc
https://github.com/dirkschumacher/rcbc
https://github.com/coin-or/SYMPHONY
https://prioritizr.net/articles/gurobi_installation_guide.html
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://github.com/cran/Rcplex/blob/master/inst/INSTALL

34 solve

gap_limit = 0.01,
output_file = FALSE,
cores = 2)

print(s2)

Solve the optimization model using a time_limit and gurobi solver
s3 <- solve(a = problem_model, solver = "gurobi", time_limit = 10, output_file = FALSE, cores = 2)

print(s3)

End(Not run)

Index

∗ datasets
simData, 29

base::print(), 24

Data (data-class), 3
data, 18, 20, 26
data-class, 3
data.frame, 9, 10, 12–14, 16, 17, 29
data.frame(), 3, 18–20

evalBlm, 5
evalBudget, 6
evalTarget, 7

getActions, 8
getConnectivityPenalty, 10
getCost, 11
getModelInfo, 12
getPerformance, 13
getPotentialBenefit, 15
getSolutionBenefit, 16

inputData, 18
inputData(), 3
inputData,data.frame,data.frame,data.frame,data.frame,data.frame-method

(inputData), 18

list(), 22

methods::show(), 29

OptimizationProblem
(optimizationProblem-class), 22

optimizationProblem, 12, 27, 32
optimizationProblem-class, 22

Portfolio (portfolio-class), 23
portfolio, 5, 7–12, 14
portfolio-class, 23
print, 24

prioriactions, 25
problem, 26
problem(), 26

show, 28
show,Data-method (show), 28
show,OptimizationProblem-method (show),

28
show,Portfolio-method (show), 28
show,Solution-method (show), 28
sim_boundary_data (simData), 29
sim_dist_features_data (simData), 29
sim_dist_threats_data (simData), 29
sim_features_data (simData), 29
sim_pu_data (simData), 29
sim_sensitivity_data (simData), 29
sim_threats_data (simData), 29
simData, 29
Solution (solution-class), 30
solution, 9–12, 14, 25, 33
solution-class, 30
solve, 31
solve(), 30, 32

vector(), 3, 22

35

	data-class
	evalBlm
	evalBudget
	evalTarget
	getActions
	getConnectivityPenalty
	getCost
	getModelInfo
	getPerformance
	getPotentialBenefit
	getSolutionBenefit
	inputData
	optimizationProblem-class
	portfolio-class
	print
	prioriactions
	problem
	show
	simData
	solution-class
	solve
	Index

